no image
Classification Metrics(분류 모델 평가 지표) 알아보기 : Accuracy, Precision, Recall, F1 Score
Intro 여러 분류 모델 중 해결해야 하는 문제의 특성, 데이터 등 다양한 사항을 고려해 몇 개의 모델을 추리는데 성공했다고 가정해봅시다. 이때 가장 성능이 좋은 모델을 선택하기 위해선 얼마나 정확하게 주어진 문제를 해결할 수 있는 지를 수치화하여 비교하는 것이 중요합니다. 모델 평가를 위해 정확성을 수치화하여 나타낸 것을 평가 지표라고 하며, 적절한 평가 지표를 설정하는 것은 매우 중요한 작업입니다. 이번 포스팅에선 기본적인 평가 지표인 Accuracy, Precision, Recall에 대해서 다뤄보겠습니다. Confusion Matrix(혼동 행렬) 분류를 성공적으로 했는지를 확인하기 위해서는 혼동 행렬을 살펴볼 필요가 있습니다. 혼동 행렬이라는 이름처럼 처음에 접했을 때는 매우 헷갈립니다. TP..
2022.01.24
no image
Word Representation이란? - BoW에서 Word2vec까지
Intro 인간이 일상에서 사용하는 언어(자연어)를 컴퓨터에게 이해시키기 위해서 자연어에 담긴 추상적 뜻을 의미있는 숫자들로 바꾸어야 합니다. 자연어를 의미있는 숫자로 바꾸는 작업을 Word Representation(단어 표현)이라고 합니다. 이번 포스팅에선 자연어를 더 잘 표현할 수 있도록 제안된 다양한 방법에 대해서 다뤄보겠습니다. Word Representation? 단어 표현은 크게 Local, Continuous 표현으로 구분됩니다. Local 표현의 경우 해당 단어 자체만을 참고하기 때문에 뉘앙스(nuance)을 담지 못하지만 Continuous 표현의 경우 단어 주위를 참고하기 때문에 뉘앙스를 담을 수 있다는 장점이 있습니다. BOW와 Word2Vec이 각각 유명한 Local, Contin..
2022.01.17