Classification Metrics(분류 모델 평가 지표) 알아보기 : Accuracy, Precision, Recall, F1 Score
Intro 여러 분류 모델 중 해결해야 하는 문제의 특성, 데이터 등 다양한 사항을 고려해 몇 개의 모델을 추리는데 성공했다고 가정해봅시다. 이때 가장 성능이 좋은 모델을 선택하기 위해선 얼마나 정확하게 주어진 문제를 해결할 수 있는 지를 수치화하여 비교하는 것이 중요합니다. 모델 평가를 위해 정확성을 수치화하여 나타낸 것을 평가 지표라고 하며, 적절한 평가 지표를 설정하는 것은 매우 중요한 작업입니다. 이번 포스팅에선 기본적인 평가 지표인 Accuracy, Precision, Recall에 대해서 다뤄보겠습니다. Confusion Matrix(혼동 행렬) 분류를 성공적으로 했는지를 확인하기 위해서는 혼동 행렬을 살펴볼 필요가 있습니다. 혼동 행렬이라는 이름처럼 처음에 접했을 때는 매우 헷갈립니다. TP..
2022.01.24